
Improving quality-critical XML workflows with
XProc 3.0 pipelines
Achim Berndzen, <xml-project />

Thorsten Rohm, Thieme Compliance GmbH

Orchestrating complex XML pipelines has been a major topic of XML-related software
development over the years. Comprehensive techniques have been developed to:

1. Deliver high-quality results
2. Ensure that the pipelines can be maintained
3. Allow the pipelines to be debugged for straightforward troubleshooting

The quality demands for the workflow and the produced results can vary: For example,
you may find a very maintainable pipeline producing documents with very low quality
demands, e.g. the system producing the static website for your local sports club. On
the other hand you might find documents with very high quality demands produced
by a pipeline that is not easy to maintain and debug. And, of course, the relationship
between the quality of the documents and the maintainability of the pipeline producing
these documents may change over time. Implementing new quality demands for the
documents might have a negative impact on the pipelines quality. And sometimes
in the history of developing a pipeline expected to produce documents with high
quality demands, you might even decide to start over, as new quality demands for the
documents threaten to impair the quality of your pipeline.

In this paper, we would like to report about a shared project of our two companies.
We had to add new features to a well-established workflow producing documents in
the medical sector that come with very high quality demands. As the existing workflow
already had some pain points, we decided to start over and to refactor it. And we
even decided to change the basic orchestrating technology: Since the existing workflow
was based on a combination of Windows batch files calling different programs and
some very elaborate XSLT stylesheets, we decided to use XProc 3.0 to orchestrate the
workflow, thus doing away with as much shell scripting as possible while keeping the
XSLT stylesheets to do the actual transformations.

As XProc 3.0 is a relatively new technology for orchestrating document workflows, we
think our project might be of some interest to people developing and/or maintaining
pipelines for documents with high quality demands. We will first provide some
background context for the produced documents and their actual usage to elaborate the
specific quality demands. This will be followed by an overview of the existing workflow
and a discussion on its pain points and new demands. We will then give an overview
of the new XProc 3.0 pipeline developed in the project and discuss some aspects of
the used technology. The paper1 concludes with the lessons learned in our project

1We would like to thank the reviewers of our abstract for their very helpful comments. A special thank goes out to
Geert Bormans whose thoughtful remarks on the abstract helped to improved this paper significantly.

2

and the key takeaways of our project in a more general context of pipelines producing
documents with high quality demands.

1. Introduction and background

1.1. About Thieme Compliance GmbH and patient education leaflets

Thieme Compliance GmbH, based in Erlangen, Germany, is a company that specialises
in providing patient education solutions for healthcare facilities. These solutions include,
among other things, information materials that educate patients about their illnesses,
treatment options and possible risks. Patient education is an important aspect of healthcare
as it helps patients make informed decisions about their health. It is also an important legal
and ethical principle in medicine.

Thieme Compliance GmbH supports healthcare facilities in implementing this principle by
providing customised information materials tailored to the specific needs of patients. The
materials are developed in close cooperation with more than 400 experts from the medical
community and tested for their comprehensibility and usefulness. Furthermore, a team of
legal advisors ensures that the patient education content always corresponds to current
case law. Professional societies and associations recommend the patient education leaflets
from Thieme Compliance. In total, more than 2,000 patient education leaflets from more
than 30 speciality areas are available in up to 31 languages. They are available in digital
form as well as various print formats.

Figure 1. Patient education leaflet

The aim is to help ensure that patients are better informed and educated so that they
can make decisions about their health in close cooperation with their doctors. Clinics and
practices are supported in meeting legal requirements and minimising liability risks by using
patient education leaflets. Under certain conditions, the clinics and practices can even
receive a reduced insurance premium if they use the patient education leaflets from Thieme
Compliance GmbH, as the risk of being sued by a patient is reduced.

Improving quality-critical XML workflows with XProc 3.0 pipelines

3

The educational content is made available to clinics and practices via the self-developed
software E-ConsentPro. E-ConsentPro is installed on-premise in clinics and practices and
offers interfaces to, or is even embedded in, clinical information systems. It ships with
Saxon-EE, Antenna House Formatter, XSLT as well as XSL-FO stylesheets, fonts, etc.
and can thus be used to generate various media forms of the patient education leaflets,
supplemented and personalised with data from the clinical information system.

Figure 2. “Anamnese mobil” app from E-ConsentPro

For parts of the patient education leaflets, such as the medical history, HL7's FHIR
(Fast Healthcare Interoperability Resources) questionnaire resource is used for syntactic
healthcare interoperability. The HL7 FHIR standard is based on a RESTful API architecture.
This is an emerging standard for exchanging medical data between different systems and
institutions and will replace the established HL7 V2 standard in the future. To ensure
semantic healthcare interoperability as well, the questionnaire resource contains coding
from SNOMED CT (Systematized Nomenclature of Medicine and Clinical Terms) or LOINC
(Logical Observation Identifiers Names and Codes):

<fhir:item>
 <fhir:linkId ↩
value="MF_Erkrankungen_Familie__Erkrankung_Blutsverwandtschaft" />
 <fhir:text value="Among your blood relatives, are or were there ↩
any diseases or indications of a disease?" />
 <fhir:type value="open-choice" />
 <fhir:required value="true" />
 <fhir:repeats value="true" />
 <fhir:answerOption ↩
id="MF_Erkrankungen_Familie__Erkrankung_Blutsverwandtschaft__nein">
 <fhir:extension url="http://hl7.org/fhir/StructureDefinition/ ↩
questionnaire-optionExclusive">
 <fhir:valueBoolean value="true" />
 </fhir:extension>
 <fhir:valueCoding>

Improving quality-critical XML workflows with XProc 3.0 pipelines

4

 <fhir:system value="http://snomed.info/sct" />
 <fhir:version value="http://snomed.info/sct/ ↩
900000000000207008/version/20220430" />
 <fhir:code value="160266009" />
 <fhir:display value="No family history of clinical finding ↩
(situation)" />
 </fhir:valueCoding>
 </fhir:answerOption>
 <fhir:answerOption ↩
id="MF_Erkrankungen_Familie__Erkrankung_Blutsverwandtschaft__Krebs">
 <fhir:valueCoding>
 <fhir:system value="http://snomed.info/sct" />
 <fhir:version value="http://snomed.info/sct/ ↩
900000000000207008/version/20210131" />
 <fhir:code value="275937001" />
 <fhir:display value="Family history of cancer ↩
(situation)" />
 </fhir:valueCoding>
 </fhir:answerOption>
 <!-- ... -->
 <fhir:answerOption ↩
id="MF_Erkrankungen_Familie__Erkrankung_Blutsverwandtschaft__Erbkrank ↩
heiten">
 <fhir:valueCoding>
 <fhir:system value="http://snomed.info/sct" />
 <fhir:version value="http://snomed.info/sct/ ↩
900000000000207008/version/20220430" />
 <fhir:code value="429962007" />
 <fhir:display value="Family history of hereditary disease ↩
(situation)" />
 </fhir:valueCoding>
 </fhir:answerOption>
</fhir:item>

The patient education content is created and managed using the component content
management system Content Lifecycle System (CLS) from Empolis Solutions GmbH. It
consists of XML files with single-source-capability, modularised using XInclude. Because of
the rich semantics, a self-developed data structure T0 XSD is used.

The patient education leaflets are published in various media formats such as PDF,
XHTML, HTML5, WordML, SpreadsheetML, among others. To facilitate the data exchange,
especially with partners, the content is converted into a variety of XML dialects as well as
JSON formats. Therefore, fully or at least highly automated publishing pipelines are being
developed and maintained.

1.2. About <xml-project /> and XProc

XProc 3.0 is a pipeline language with an XML syntax. It is based on XProc (1.0), which
became a W3C recommendation in 2010. Based on user experience, a group of volunteers
have worked together since 2017 as an W3C community group to improve and expand
the original language. In September 2022, a community report on the core language
specifications and the standard step library was published. While additional step libraries,
e.g. for file processing, document validation, and paged media creation, are technically still
under construction, we consider them to be very mature and in their final state. In fact, the
project presented here relies heavily steps from the additional libraries, and they proved to
be very useful and robust.

Improving quality-critical XML workflows with XProc 3.0 pipelines

5

For those familiar with the original XProc, it might be interesting to mention some of the
changes made for XProc 3.0. The most visible change is the expansion of the basic
document model from XML only to a more realistic model for the latest processing: “Native”
documents in XProc 3.0 are now XML, HTML, JSON, as well as text documents and
binary documents (such as images or PDFs). The newly supported document types are
accompanied by corresponding steps so that they can be used effectively in the pipelines.
Further highlights of XProc 3.0 are the move to XPath 3.1 as the underlying processing
language, XDM typing for options and variables along with a number of minor syntax
tweaks that greatly improve the coding and debugging experience from the original XProc.

For those not familiar with XProc 1.0, or those who want to start over with XProc 3.0,
there is now an improved learning base. Foremost, there is Erik Siegel's excellent book
[Siegel:2020]. Erik also published a series of articles introducing XProc 3.0 on XML.com
([Siegel:2019], [Siegel:2020a], [Siegel:2020b]). For those who prefer videos, a series of six
talks from Markup UK 2020 are available on the conference's YouTube channel. In addition
to two talks on the basics of XProc 3.0, there are also talks on handling JSON documents,
text documents and Zip archives.

Currently, two XProc 3.0 processors are known to be available: XML Calabash 3.0 is in its
final phase as a successor to the well-known XML Calabash, both developed by Norman
Tovey-Walsh. This paper is based on MorganaXProc-III, which is the successor to the now
retired MorganaXProc. Also developed by <xml-project />, this is a Java (or JVM) based
implementation that, in addition to the core specification and the standard step libraries,
also implements the file step library and most of the validation library, while also supporting
Extensible Validation Report Language (XVRL). It has been around as a public beta since
February 2020, received a lot of useful bug reports from users and was released as
version 1.0 in September 2022. Since then, it has received monthly updates with bug fixes
and feature enhancements. MorganaXProc-IIIse is an open-source product released under
GPL 3.0. Coming later this year is a second, commercial edition called MorganaXProc-IIIee
(Extended Edition). It provides support for almost all optional features of XProc 3.0, with
complete coverage of the proposed step libraries as well as processor-specific steps such
as image processing.

2. Introduction to existing batches

2.1. Batch “fragengruppe_2_evidence”

When it comes to the content delivery to Thieme Compliance's E-ConsentPro, the latest
editions of the patient education leaflets are selected in the content management system
CLS and an export is performed. The main XML file as well as all referenced XIncludes and
images are exported from the database into a temporary folder on the CLS server. Here,
the batch “fragengruppe_2_evidence” is used to

◆Merge the main XML with the XIncludes

◆ Change the XML files from T0 XSD to T0 DTD by removing namespaces and inserting a
Document Type Declaration

◆ Derive up to twelve different variants from the source XML file, each valid for the specific
version of T0 DTD employed for the different versions of E-ConsentPro currently in use in
the market

When the transformation is complete, Beyond Compare from Scooter Software is used to
copy the images from the source to the result folder. The output is then zipped together with
the referenced images and delivered via REST services using curl.

Improving quality-critical XML workflows with XProc 3.0 pipelines

6

Figure 3. Batch “fragengruppe_2_evidence”

2.2. Batch “fragengruppe_2_FHIR-Questionnaire”

This second batch is used to deliver the medical history part of the patient education leaflet
additionally as an HL7 FHIR questionnaire resource. Therefore, the main XML file as well
as all referenced XIncludes are exported from the database into a temporary folder on the
CLS server. A three-step transformation is then performed to:

◆Merge the main XML with the XIncludes

◆Generate the FHIR questionnaire resource and then clean it up (e.g. whitespace
handling)

◆ Derive the human-readable part from the previously generated FHIR questionnaire
resource and merge it back in

◆Optionally transform the previously generated XML FHIR questionnaire resource into
JSON

◆ Further optionally merge the just generated JSON FHIR questionnaire resource into an
XHTML template for an output based on LHC-Forms

Afterwards, the generated results are zipped and delivered via REST services using curl.
The images are not needed for this output and are therefore discarded.

Improving quality-critical XML workflows with XProc 3.0 pipelines

7

Figure 4. Batch “fragengruppe_2_FHIR-Questionnaire”

3. Pain points of the existing batches

3.1. Lacking of flexibility for inserting additional XSLT steps (in between)

Regarding the batch “fragengruppe_2_evidence”, it all started about a dozen years ago
with just one single XSLT stylesheet. It was called with an initial template and used
fn:collection() to process the entire source folder.

Improving quality-critical XML workflows with XProc 3.0 pipelines

8

Over the years, more and more requirements have been added as well as, and new
E‑ConsentPro versions were released that had to be supported with the matching
version of the XML content. As a result, the original XSLT stylesheet became more and
more complex. In addition, some of the new requirements could no longer be sensibly
implemented within a single XSLT stylesheet – for example, additional whitespace handling
following a transformation performed on the original stylesheet. The simplest way to extend
the existing transformation, without having to adjust anything else, was by adding another
XSLT stylesheet using @saxon:next-in-chain.

Using @saxon:next-in-chain was an incredibly easy and effective solution, but it also
comes with some downsides. Each XSLT stylesheet is orchestrated from the previous
one. Inserting an additional stylesheet is inflexible and requires an unrelated XSLT to be
changed.

Saxonica has since deprecated @saxon:next-in-chain and suggests using
fn:transform() instead. While we are convinced that this function is a suitable
replacement for @saxon:next-in-chain, but we have not looked into this simply due
to the additional pain points as well as the requested improvements for existing pipelines.

3.2. No easy way to debug the intermediate results of each XSLT step

Debugging a multi-step XSLT pipeline can be an arduous process. A no longer matching
<xsl:template> in a later XSLT stylesheet, because an earlier stylesheet has already
changed the node(), occurs frequently. Storing intermediate results from each step
therefore is necessary but is not as easy as it could be, based on the existing batches.
XSLT provides <xsl:result-document> for this purpose. Until now, however, this is
only inserted manually if needed and not added as a general rule. The XProc 3.0 pipeline
needs to take this into account from the outset and simply offer this functionality by adding
an invocation parameter.

3.3. Too many tools means too many dependencies

The main problem with the existing batches is the stability and maintainability of the
pipelines. That is because the batches had to use different tools for specific tasks, e.g.:

◆ Beyond Compare for synchronising the XML files and images in the source folder and in
the result folders

◆ 7-Zip to create Zip archives

◆ curl for transferring results to REST endpoints

The more tools are involved, the greater the dependencies and the greater the risk of
breaking changes with future updates of these tools – of which there were quite a few
in that dozen years. It also makes it harder to run the batches from different machines.
That is because it has to be ensured that each machine provides these specific tools
in their specific version. XProc 3.0 offers the necessary functionalities out of the box,
which provided the opportunity to significantly reduce dependencies by minimising the tools
involved in the pipelines.

4. New requirements for next version
In addition to the pain points mentioned above, there were also some requested
improvements.

4.1. Future-proof approach and improved maintainability by adding a separate orchestration layer

As stated above, the existing batches are not only based on XSLT but also call other
tools to fulfil different tasks. Using the command line interface of these tools has the

Improving quality-critical XML workflows with XProc 3.0 pipelines

9

disadvantage of a strong connection between a logical task (e.g. create Zip archives) and a
specific software implementation (e.g. call 7-Zip with the following parameters). Adapting to
a new software version with changes in the command line interface involves changes in the
batch. Using other software to fulfil the task is often associated with great costs. Languages
such as ANT etc. introduce an extra level of abstraction that models the logical structure of
the task and uncouples it from a specific implementation. Using such a level of abstractions
makes workflows more robust against changes in the implementing software. Changing
the task's implementation can be as easy as changing one configuration file instead of
changing every workflow document that uses the task.

4.2. Increased quality through validation of XML sources using T0 XSD as well as validation of XML results using
specific versions of T0 DTD

While the existing pipelines validate all XML source documents, XML results were not
validated. Simply validating the XML results manually during stylesheet development and
subsequently applying correct XSLT transformations while relying on valid results was
sufficient. The nature of the source-to-result transformation for the XML documents is not
one-to-one, but one-to-many – producing up to twelve versions of XML result documents
for one source document. With regard to the quality of the results, none of these twelve
XML results should appear in the Zip archive if at least one result document is not valid with
respect to its specific version of T0 DTD.

4.3. Increased quality by additional validation of XML results using Schematron

Schematron validations (of XML sources) are performed by Medical Editors and Content
Managers during editing in <oXygen /> XML Editor. There is even a batch based pipeline
integrated in the content management system to perform a Schematron validation using
Skeleton that generats an easy to understand PDF from the SVRL report. Unfortunenatly
this Skeleton implementation isn't integrated in the existing batches for the exports.
Therefore the XProc 3.0 pipeline should perform a additional Schematron validation when
the DTD validation mentioned above is done.

4.4. Summarised, formatted and easily comprehensible log files

The target audience of the content management system is Medical Editors, i.e. non-
technical users. For every new edition of their patient education leaflet, they have to
perform an export so that an integration test of their leaflet can be done in E-ConsentPro
for quality assurance purposes. After moving to XProc 3.0, the pipelines will produce a
lot more logging messages, e.g. because of the newly performed additional validations.
The existing batches simply stored Saxon’s error messages to different text files. For
the non-technical audience, there should be just one single HTML file that serves as a
summarised log. There should also be some basic CSS and the use of <details> to
show/hide additional information as well as the possibility to filter log messages by error
category.

4.5. Performance improvement by omitting unnecessary images from the Zip archive

The XML sources contain links to images supplied in the same folder as the XML sources.
The improved pipeline has to make sure that all references are valid, i.e. every link goes to
an existing image. The batch simply copied all images from the source folder to the result
folders. The XProc 3.0 pipeline should be able to copy just the referenced images, but only
the images referenced in the XML results, not in the XML sources. That is because there
are cases when the pipeline omits the XML result because of special XPath conditions in
the source or because the generated XML result is not valid against its specific version
of T0 DTD. Although these additional unnecessary images are subsequently ignored by
the REST services, it would be better to just omit them. This would result in smaller Zip
archives and therefore faster transmission to the REST service and faster processing.

Improving quality-critical XML workflows with XProc 3.0 pipelines

10

4.6. Limiting processing to specific sources from the source folder

When a new requirement is developed in the XSLT stylesheets, special test XML sources
are created. Normally, the source folder in the file system contains all source XML files,
which the new test XML sources are added to. Processing the whole source folder is
necessary to avoid regressions. But this takes a couple of hours and, during stylesheet
development, only the new test XML sources are relevant. So that the source folder does
not have to be changed manually, an easy way to use another source folder and/or a
specific file filter is needed. The XProc 3.0 pipeline should be able to use a custom source
folder and/or a specific file filter as invocation parameters.

5. New system based on XProc 3.0

Having discussed the original batches and the requirements for the new system, we can
now move on to the new pipeline system using XProc 3.0. If we take another look at
Figure 3 [7] and Figure 4 [8], it is easy to see that the first one is a good deal more
complex than the second one. Our coverage will therefore concentrate primarily on the
pipeline replacing the first batch since the basic concepts and strategies for developing
the two pipelines are fundamentally the same. The difference between the two pipelines is
discussed further below.

The general approach in our move to XProc 3.0 was to replace the double control flow
of the original solution with a single control flow in a pipeline. As Figure 3 [7] shows, the
original batch incorporated twelve sub-batches, one for each parameter group. Inside each
of these batches, an XSLT stylesheet was called to collect and process all documents
in the input folder with the given parameters. As we wanted to eliminate as much batch
scripting as possible, the first or outer control flow had to be replaced by an XProc 3.0
pipeline. Given the new requirements, we had to remove the inner, XSLT-based control flow
as well, thus giving us one iteration over all documents in the input folder instead of twelve
iterations (and potentially more in the future).

The basic reason for this was the new requirement to check the picture references: A
document in the input folder should only be processed if all references to pictures in
the document are valid, i.e. point to an existing file. As this is a property of an input
document, it makes sense to address this once and for all, and hence start the twelve XSLT
transformations only after all picture references have been checked.

Doing away with batch scripting also necessitates two other additions to the pipeline: As
we no longer call XSLT via Saxon's command line, we can no longer use its powerful
command line interface to perform an XInclude and to validate the source documents. As
XProc 3.0 has the steps <p:xinclude> and <p:validate-with-xml-schema>, these
two tasks can be easily performed before the stylesheet transformations begin.

The well-established and tested XSLT stylesheets are of course reused in the pipeline.
However, this first stylesheet is not called from a batch anymore but via the <p:xslt> step
instead. Additionally, the XProc pipeline uses a different entry point to the stylesheet than
the batch: The latter called a named template that creates a collection of documents in a
given folder matching a given pattern of file names. For each document in this collection, a
template is then called by matching its root element.

The XProc 3.0 pipeline calls the same template by matching the document's root
element, but creates the sequence of the documents to be processed itself: XProc's
<p:directory-list> produces a document reflecting the content of a given directory,
possibly using include and exclude filters. The pipeline then iterates over each <c:file>
element to subject the respective document to processing.

Improving quality-critical XML workflows with XProc 3.0 pipelines

11

Figure 5. A bird's eye view of the new system

The second change to the existing XSLT stylesheet is to unroll the @saxon:next-in-
chain concatenation of stylesheets to a sequence of explicit calls of <p:xslt>. In Saxon,
you can use @saxon:next-in-chain inside a <xsl:output> to direct the stylesheet's
output to another stylesheet. This is a convenient way to chain stylesheets and thus
decompose complex processing into a set of smaller stylesheets. This approach helps
to improve the quality of code by breaking down a complex task into smaller pieces that
are easier to manage. The downside is that @saxon:next-in-chain is a Saxon-only
extension attribute, which is not supported by other processors and is not guaranteed
to be a Saxon feature in the future. With the XPath 3.1 function fn:transform(), we
have a way to chain stylesheet execution together in a standard-compliant manner. It
would therefore be easy to rewrite the existing stylesheets to get rid of @saxon:next-in-
chain and replace it with a cascade of fn:transform(). Hence, there is no need to
change technology from XSLT to XProc if you are looking for a standard-compliant way
to develop decomposed stylesheets and then chain them together to perform the general
transformation.

In our case, using XProc 3.0 provides an additional advantage for developing decomposed
stylesheets: With <p:store>, XProc 3.0 has a step for storing documents that can easily
be used to improve debugging pipelines and and – in our case – decomposed stylesheets.
Unlike in XProc 1.0, <p:store> is fully transparent, meaning that the document on the
input port is stored and delivered on the output port. Therefore adding a <p:store>
(almost) anywhere in your pipeline does not break the “normal” flow of documents,
but provides great debugging opportunities. Switching off debugging is also pretty easy
in XProc 3.0: The attribute @use-when associated with a Boolean expression can be
used on (almost) any step in XProc. If the expression is evaluated as false, the step
(and all its descendants) are effectively excluded from the pipeline. Therefore, by using
<p:store use-when="expr" />, we can easily switch the generation of debugging
information on and off. Since XProc 3.0 also introduced static options that could be used
in XPath expressions, switching debugging on and off directly from the pipeline invocation
in the command line is the way to go. To sum this point up: Unrolling @saxon:next-in-
chain concatenation into an XProc pipeline helps to improve the quality of code by splitting
larger tasks into smaller pieces.

Improving quality-critical XML workflows with XProc 3.0 pipelines

12

What we have discussed so far might be considered a general blueprint for embedding
complex XSLT stylesheets into an XProc pipeline. Running this pipeline is, apart from the
improvements in debugging, largely equivalent to invoking the original stylesheet. Let us
now have a look at the advancements added to the overall process with the XProc pipeline.
As you can see in Figure 5 [12], the general process can be described in three main parts:

1. Obtaining the URIs of the documents to be processed
2. Processing any individual documents and (possibly) storing the results to disk
3. Collecting the information from the individual processing to

a. Create the Zip archive
b. Generate a report about the processing

In the overall design, the <p:for-each> step has two purposes: (1) It processes
every selected document, i.e. applying the XSLT stylesheets and, if the processing was
successful, storing the produced documents to disk. (2) It produces meta information about
the document processing: For every processed source document, a report document is
created. The latter contains success or error reports for each stage of the source document
processing, references to the image files in the source document, and a list of URIs
pointing to the created result documents. We will look at these report documents later.
For now, let us focus on the first purpose of the block inside the <p:for-each> step.

When unrolling the @saxon:next-in-chain sequence from the original batch, we first
get a sequence of two to six <p:xslt> steps, each followed by a <p:store> for
debugging purposes. The first improvement to be added to the pipeline was the validation
of the result document(s). Until then the quality of the result document(s) relied on the
validity of the source document and the correctness of the XSLT stylesheet(s) to produce
the result documents. One requirement for the XProc pipeline was to add a validation for
the result document(s) and store only those documents that prove to be valid. As XProc 3.0
defines steps for validation with RELAX NG, XML Schema and Schematron (as well as
NVDL and JSON schemas), this could be achieved quite easily. The result of the last
XSLT transformation is connected to the input port of a validation step. If the validation
is successful, i.e. the document is valid, it appears on the step's result port and can be
stored. If the document proves to be invalid, the validation step raises an error, which is
then caught to create an element for the report document.

For the “fragengruppe_2_FHIR-Questionnaire” the validation takes the form of an XML
schema and a Schematron document. To validate the produced FHIR document,
you simply chain a <p:validate-with-xml-schema> and <p:validate-with-
schematron> after each other to obtain a complete validation of the document. For the
other pipeline, called “fragengruppe_2_evidence” the resulting documents are in-house
documents for which a DTD is the authoritative grammar. This poses some problems to
XProc 3.0 since, as you might have established from the aforementioned list of supported
validation languages, there is no step for DTD validation included. With <p:load>,
however, pipeline authors can ask for a DTD validation of the document to be loaded.
As with the “normal” validation steps, this either returns a valid document or an error is
thrown. Unlike with the normal validation steps, however, the document to be validated
does not appear on the input port but has to be loaded from a secondary store via URI.
To circumvent this restriction, we switched the steps around: Instead of validating the
(in-memory) document first and then storing if the validation succeeds, we first store the
document and then validate it via reloading. As a consequence, invalid artifacts are written
to disk, which does not occur in the other pipelines where we can validate before the
document is stored. This was a deliberate decision, because it would be easy to delete the
stored document from disk once we have discovered its invalidity.

Another aspect of the quality improvements for the produced results is related to image
referencing. Along with the source XML documents, the source folder also contains image
files. Some of the image files are referenced in the documents, but not all. On the

Improving quality-critical XML workflows with XProc 3.0 pipelines

13

other hand, documents might have a reference to a non-existing image file. To improve
the overall quality of the results, the XProc pipeline was required to check the source
documents for image references and to raise an error if an image file is referenced that is
not present in the source folder. In addition, the pipeline has to keep track of the referenced
image files, so that only referenced images are included in the resulting Zip archive.

With XProc 3.0, both requirements are pretty easy to fulfill: The pipeline iterates over
all image references in the selected source documents and obtains their URI. With the
<p:file-info> step, you can then obtain information about the referenced image: If the
referenced resource exists, a <c:file> document appears on the result port. If the
document does not exist, a <c:error> document will appear on this port. In the first case,
an entry for the archive manifest is generated, In the second case, an error report element
is created to flag the error for the report to be generated.

The outlined algorithm solves both shortcomings in the existing batch system: Since only
images with a corresponding <c:entry> element are included in the Zip archive, the latter
will only contain images actually referenced in at least one source document. And since
every image reference in a source document is tested, the resulting report will include every
error for invalid image references.

However, some post-processing of the image-related <c:entry> elements proved to
be necessary: For efficiency reasons, the image references were tested for the source
documents, but not for the produced documents. This is possible since the XSLT
transformations do not add any image references. In general, there will be a 1:m
relationship between the source documents and resulting documents, but since the
produced documents are validated, there may be a 1:0 relationship if the validation for
all produced documents fails. In this special case, there might be a <c:entry> element
for an image document that is not referenced by any resulting document. Before actually
generating the Zip archive, some cleanup has to take place. Every entry for an image
documents records the URI of the source document it was derived from as well as any
resulting XML document. For every image-related <c:entry>, the cleanup has to check
whether there is a corresponding <c:entry> from a produced document. If not, the image-
related entry is simply deleted, meaning that the resulting archive will only contain images
actually referenced in a contained XML document.

The last aspect of the new XProc pipeline system to mention here is the improvement
of logging or reporting. One new feature of XProc 3.0 that very much supports this
requirement is the addition of <p:catch> with specified error codes. In XProc 1.0, we
just had a <p:try>/<p:catch> where every error raised in the <p:try> block had to be
handled in a single <p:catch> block. The ability to write different <p:catch> blocks for
specific errors results in a more readable pipeline. This is also facilitated by the definition of
more fine-grained error conditions for each individual step in XProc 3.0. This makes it very
easy to identify what exactly went wrong inside an XProc pipeline, and to react to or report
on the exact problems that occurred.

Our pipeline makes extensive use of <p:try>/<p:catch> to improve reporting, which is
an important requirement as stated above. If you have a look at Figure 5 [12] again, the
pipeline does not only produce XML documents representing the transformation results
(shown on the right side of the code block), but also reports about the pipeline process
(failing out at the bottom of the code block). For (almost) every document found in the
source directory, the pipeline produces a report document. Here is an excerpt of such a
document:

<tcg:report file="reference-to-source-doc">
 <tcg:report-done phase="validation">
 <successfully-validated />

Improving quality-critical XML workflows with XProc 3.0 pipelines

14

 </tcg:report-done>
 <tcg:report-done phase="processFileRefs">
 <c:entry name="name-of-zip-entry-for-pic1"
 href="path-to-pic1"
 found-in="reference-to-source-doc" />
 </tcg:report-done>
 <tcg:report-done phase="2.5.1">
 <c:entry name="name-of-zip-entry-for-doc1"
 href="path-to-doc1"
 derived-from="reference-to-source-doc" />
 </tcg:report-done>
 <tcg:report-error phase="2.6.0">
 <c:errors><!-- detailed error report here --></c:errors>
 </tcg:report-error>
</tcg:report>

This snippet shows a processing report for a source document the URI of which is reported
in the @file attribute. The document passes the source validation successfully, and it
contains a valid reference to an image file. It is transformed in phase "2.5.1", thus
producing a result stored at the recorded position. However, the transformation in phase
"2.6.0" was not successful, as a result of which a <tcg:report-error> is included to
flag the error and to report corresponding details. The <c:entry> elements are used to
create the Zip archive. The attributes @found-in and @derived-from are used to make
sure that an image file is included in the archive only if the source document containing the
image references also passes transformation.

Based on the collected processing reports, the last two tasks of the pipeline are performed:
creating the Zip archive and then creating the final report. Creating the archive is
pretty straightforward. XProc 3.0's <p:archive> step has an input port manifest.
The expected document has a <c:manifest> root element with <c:entry> elements
denoting the expected archive entries. As we already created <c:entry> elements in our
document reports, we just need to extract those elements from the report, wrap it in the
expected element root and then call <p:archive> to create the Zip archive.

The final report is also based on the collected report elements: The reports contains
information about every single processed XML document in the source folder, to which
we add aggregated data such as the number of processed files, the number of detected
errors or the complete processing duration. Finally, this report is processed with an XSLT
stylesheet to create an HTML document and thus provide the improved logs requested in
the initial requirements.

Improving quality-critical XML workflows with XProc 3.0 pipelines

15

Figure 6. Summarised HTML log

As stated above, since the two batches were similar in their basic concepts, the two
pipelines will also resemble each other. There are two basic differences to the pipeline
already discussed:

1. While the first pipeline is only a cascade of two XSLT stylesheet, the FHIR has a total
of five XSLTs. The implementation is pretty straightforward as the result of the first
<p:xslt> step serves as the input for the next one. As a consequence, instead of two
consecutive calls to <p:xslt>, we have a sequence of five interconnected calls in the
FHIR pipeline.

2. The second, more conceptual difference is the way that the pipeline results are
validated. While the pipeline discussed above uses a DTD validation, FHIR documents
employ a different concept. The standard defines an XML schema and a Schematron
schema to validate the documents. As both of these validation technologies are
supported in XProc 3.0 by individual steps, incorporating FHIR validation simply
requires a pair of <p:validate-with-xml-schema> and <p:validate-with-
schematron> with the produced document on the default input port.

6. Takeaways

What are the takeaways from our project?

6.1. Smooth transition to XProc 3.0

First of all, we have to say that the move from batch scripts to XProc 3.0 was a very
smooth experience. Compared to developing pipelines with XProc 1.0, the process is a

Improving quality-critical XML workflows with XProc 3.0 pipelines

16

lot faster. This is thanks both to the wealth of syntactic sugar and to the much cleaner
concept of some frequently used steps. The type system for variables and options provides
a new level of security. The availability of XPath 3.0 and the respective functions improves
programming a lot. And we are pleased to say that we did not miss parameter ports for a
second.

6.2. MorganaXProc-IIIse worked well and could even be improved over the course of the project

MorganaXProc-IIIse turned out to be a reasonable tool. The complete task could be
fulfilled without any custom additions. Having to develop a complex pipeline system with
a lot of documents to process helped a lot in improving MorganaXProc. During pipeline
development, some bugs were found in the software and most of them have already been
fixed. Additionally, we identified pain points for optimisation from using MorganaXProc in a
large real-world project, which will be reflected in new features to be added in the future.

6.3. Serialisation is now done by MorganaXProc and no longer by Saxon

One thing to note is that with XProc 3.0 the serialisation is done by MorganaXProc even
though the transformation is still performed by Saxon. Since the XSLT transformation
is now orchestrated by XProc 3.0, a <xsl:output> declaration in the stylesheet is
now ignored. In particular, the serialisation differs with regard to the order of attributes
and whether or not they are presented in a new line. In addition, Also Saxon provides
powerful serialisation features which MorganaXProc currently lacks. For instance, there is
@saxon:line-length, @saxon:attribute-order or @saxon:double-space, which
were used with the batch pipelines. These are useful features for (further) increasing the
human readibility of the XML result documents.

Figure 7. Serialisation done by MorganaXProc (left) and Saxon (right)

Improving quality-critical XML workflows with XProc 3.0 pipelines

17

We had to ensure that the XML results of the XProc 3.0 pipelines are similar to the results
of the batch pipelines. But there were two main issues:

1. There is some siginificant whitespace handling in the XSLT stylesheets.
2. Some transformations are now done in XProc itself using <p:insert> and no longer

within the XSLT stylesheets.

We were not aware of the serialisation behaviour at first and, aesthetic considerations
aside, these shortcomings in MorganaXProc-IIIse made it difficult to compare the results
of the original batches with the pipeline results. Comparing the XML results therefore took
more time, and the XMLs had to be pretty-printed first, with the downside that this falsified
the whitespace handling.

6.4. Performance problems with FHIR XML schema

The low performance of the FHIR pipeline gave us some headaches. It was significantly
slower than the other pipeline although being very similar in the its structure. Turned
out that the result validations with the official FHIR schema was the culprit. Initially we
used “fhir-all” in <p:validate-with-xml-schema>, but that was extremely slow.
Turns out that schema document just imported about 140 other schema documents,
and each of them importing the same schema. Luckily there is an other official schema
document “fhir-single” which contains a complete schema document. Using this
schema document did the trick and we are now happy with the pipeline's performance.

6.5. XProc pipeline optimisation by loading stylesheets only once at the beginning

The pipeline development was not without drawbacks: The first (and natural) approach to
processing the documents in the input folder would be:

<p:for-each>
 <p:xslt>
 <p:with-input port="stylesheet" href="the-stylesheet.xsl" />
 </p:xslt>
</p:for-each>

However, if you process around 15,000 source documents, the stylesheet document is
loaded each time too. Since this is completely inefficient, we changed it to:

<p:load href="the-stylesheet.xsl" name="stylesheet" />
<!-- ... -->
<p:for-each>
 <p:xslt>
 <p:with-input port="stylesheet" pipe="@stylesheet" />
 </p:xslt>
</p:for-each>

This is a bit better performance-wise, but makes the pipeline more difficult to read.
Moreover, it only partially resolves the inefficiency issue because the stylesheet has to
be compiled every time the <p:for-each> is executed. The same applies to the XML
schemas or the Schematron. They have to be prepared every time to be usable, although
they do not change in our case. Using an XML catalog does not help here, because it
only caches the document. The most effective solution would be to cache the ready-to-use
stylesheet etc. But simply caching them as default processor behaviour is not feasible in
XProc 3.0. Looking at the specifications, it is perfectly possible to rewrite documents or
stylesheets etc. within <p:for-each> so that a later iteration depends on documents
produced in an earlier one.

Improving quality-critical XML workflows with XProc 3.0 pipelines

18

A processor could perform some optimisation here by checking whether a certain document
is written inside a <p:for-each>. However, since catalog resolution etc. frequently takes
place in XProc, there is no simple and reliable way to do this. From our perspective,
some more investigation of this problem is necessary: One solution could be an (extension)
attribute on <p:with-input> allowing a pipeline author to declare a stylesheet, schema
etc. to be cacheable. Whether this is implemented in XProc at language level or takes the
form of a vendor-specific extension is a discussion for the future.

6.6. Feature request for XProc: please add <p:validate-with-dtd>

XProc 3.0 offers a whole range of possibilities for validating documents using:

◆ <p:validate-with-json-schema>
◆ <p:validate-with-nvdl>
◆ <p:validate-with-relax-ng>
◆ <p:validate-with-schematron>
◆ <p:validate-with-xml-schema>

However, there is no equivalent for validating XML documents with DTD.

Even though XML Schema became a W3C recommendation already in 2001, and
RELAX NG was also defined then, there are still legacy systems that only support DTD. In
rare cases, it is possible to enhance these systems by switching to XML Schema, but this is
generally not an option and these systems have to be supported nevertheless.

The lack of DTD validation in XProc 3.0 means that the pipelines have to use a
workaround. The XML result must first be stored to the file system and then loaded
immediately from there again using <p:load>. This is because, surprisingly, DTD
validation is possible with XProc 3.0 but only while loading a document. Finally, the
previously stored and validated XML result has to be deleted, because its no longer
needed. While this workaround does its job, the ability to do this in memory using
something like <p:validate-with-dtd> would be much more effective.

There is perhaps an argument for adding DTD validation to the pipeline using
<p:declare-step>. However, this requires the XProc processor to realise that only a
memory stream is needed, causing it to perform an optimisation and avoid storing the result
to the file system and reloading it. Even if this would work, anybody who wants to support
DTD has to add the following step to their pipelines instead of just using <p:validate-
with-dtd>.

<p:declare-step type="tcg:validate-with-dtd">
 <p:input port="source" sequence="false" content-types="xml" />
 <p:output port="result" sequence="true" content-types="xml" />

 <p:pipe step="load" />

 <p:store href="foo.xml" name="store" />

 <p:load href="foo.xml" name="load" parameters="map{'dtd- ↩
validate' : true()}" depends-on="store" />

 <p:file-delete href="foo.xml" depends-on="load" />
</p:declare-step>

So please, XProc working group, support DTD validation natively and add <p:validate-
with-dtd> and Bob's your uncle.

Improving quality-critical XML workflows with XProc 3.0 pipelines

19

Bibliography

[Siegel:2019] Erik Siegel. An introduction to XProc 3.0. XML.com. https://www.xml.com/
articles/2019/11/05/introduction-xproc-30/. 2019.

[Siegel:2020] Erik Siegel. XProc 3.0. Programmer Reference. XML Press. Laguna Hills,
CA. 2020.

[Siegel:2020a] Erik Siegel. XProc 3.0 - Connecting steps using ports. XML.com. https://
www.xml.com/articles/2020/01/23/xproc-30-connecting-steps-using-ports/. 2020.

[Siegel:2020b] Erik Siegel. XProc 3.0 - Strategies for merging
documents. XML.com. https://www.xml.com/articles/2020/11/16/xproc-30-strategies-
merging-documents/. 2020.

[7-Zip] is a file archiver with a high compression ratio. https://www.7-zip.org

[Beyond Compare] is a data comparison program developed by Scooter Software. In
addition to comparing files, the program can also compare entire directories as well
as FTP directories and archives. The program's particular strengths include its scripting
capability and its usage of built-in and extendable comparison rules for different file
formats. https://www.scootersoftware.com

[CLS] Content Lifecycle System (CLS) is a component content management system from
Empolis Solutions GmbH. https://www.empolis.com/

[curl] is used in command lines or scripts to transfer data. https://curl.se

[E-ConsentPro] is a software solution for digital patient education developed by Thieme
Compliance GmbH https://thieme-compliance.de/en/products/e-consentpro-software/

[HL7 FHIR] The Fast Healthcare Interoperability Resources (FHIR, pronounced “fire”)
standard is a set of rules and specifications for exchanging electronic healthcare data.
It was created by the Health Level Seven International (HL7) healthcare standards
organisation. https://www.hl7.org/fhir

[LHC-Forms] is a widget that renders input forms for web-based applications based
on FHIR questionnaires provided by the National Library of Medicine. https://
lhcforms.nlm.nih.gov/

[LOINC] (Logical Observation Identifiers Names and Codes) is an international system
published by the Regenstrief Institute for the unique identification and coding of medical
observations, especially laboratory tests. https://loinc.org

[SNOMED CT] (Systematized Nomenclature of Medicine and Clinical Terms) is currently
the most comprehensive health terminology in the world, a steadily growing ontology
of preferred terms and their synonyms. It is maintained and distributed by SNOMED
International. https://www.snomed.org

[XProc] is an XML based programming language for processing documents in pipelines,
which involves chaining conversions and other steps together to achieve the desired
results. The current version is 3.0. https://xproc.org/

Improving quality-critical XML workflows with XProc 3.0 pipelines

20

https://www.7-zip.org
https://www.scootersoftware.com
https://www.empolis.com/
https://curl.se
https://thieme-compliance.de/en/products/e-consentpro-software/
https://www.hl7.org/fhir
https://lhcforms.nlm.nih.gov/
https://lhcforms.nlm.nih.gov/
https://loinc.org
https://www.snomed.org
https://xproc.org/

	Improving quality-critical XML workflows with XProc 3.0 pipelines
	1. Introduction and background
	1.1. About Thieme Compliance GmbH and patient education leaflets
	1.2. About <xml-project /> and XProc

	2. Introduction to existing batches
	2.1. Batch “fragengruppe_2_evidence”
	2.2. Batch “fragengruppe_2_FHIR-Questionnaire”

	3. Pain points of the existing batches
	3.1. Lacking of flexibility for inserting additional XSLT steps (in between)
	3.2. No easy way to debug the intermediate results of each XSLT step
	3.3. Too many tools means too many dependencies

	4. New requirements for next version
	4.1. Future-proof approach and improved maintainability by adding a separate orchestration layer
	4.2. Increased quality through validation of XML sources using T0 XSD as well as validation of XML results using specific versions of T0 DTD
	4.3. Increased quality by additional validation of XML results using Schematron
	4.4. Summarised, formatted and easily comprehensible log files
	4.5. Performance improvement by omitting unnecessary images from the Zip archive
	4.6. Limiting processing to specific sources from the source folder

	5. New system based on XProc 3.0
	6. Takeaways
	6.1. Smooth transition to XProc 3.0
	6.2. MorganaXProc-IIIse worked well and could even be improved over the course of the project
	6.3. Serialisation is now done by MorganaXProc and no longer by Saxon
	6.4. Performance problems with FHIR XML schema
	6.5. XProc pipeline optimisation by loading stylesheets only once at the beginning
	6.6. Feature request for XProc: please add <p:validate-with-dtd>

	Bibliography

